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Summary This application note describes a parameterizable content-addressable memory (CAM), and is 
accompanied by a reference design that replaces the CAM core previously delivered through 
the CORE Generator™ software. The CAM reference design should be used for all new FPGA 
designs targeting Virtex®-6, Virtex-5, Virtex-4, Spartan®-6, Spartan-3, Spartan-3E, 
Spartan-3A, Spartan-3A DSP FPGAs, and newer architectures. All the features and interfaces 
included in the reference design are backward compatible with the LogiCORE™ IP CAM v6.1 
core. In addition, because the reference design is provided in plain-text VHDL format, the 
implementation of the function is fully visible, allowing for easy debug and modification of the 
code.

Introduction A CAM performs content matching rather than the address matching performed by standard 
memory cores. The content matching approach enables faster data searches than can be 
achieved by sequentially checking each address location in a standard memory for a particular 
value. The higher speed searches are achieved by using content values as an index into a 
database of address values. The additional ability to perform content compares in parallel 
enables even higher speed searches. A set of scripts is included with the CAM reference 
design that allow the customization of width, depth, memory type, and optional features.

Features

The CAM reference design has these features:

• Memory types: The CAM can be configured using one of two memory implementations:

• SRL16E-based CAM with a 16 clock cycle write operation and a one clock cycle 
search operation.

• Block RAM-based CAM with only a two clock cycle write operation and a one clock 
cycle search operation. The block RAM-based CAM also supports an optional 
additional output register that adds a one clock cycle latency to all read operations.

• Ternary modes: The CAM supports two ternary modes for both write and search 
operations in the SRL16E implementation:

• Standard ternary mode: Bit X matches either 1, 0, or X (1010 = 1X1X = 10XX) and is 
referred to as a don’t care bit.

• Enhanced ternary mode: Bit X also matches either 1, 0, or X (1010 = 1X1X = 10XX), 
also referred to as a don’t care bit. Bit U does not match any of the possible bit values: 
1, 0, X, or U, and is referred to as an unmatchable bit in this document.

• Encoded/unencoded address: The match address can be in binary encoded, single-match 
unencoded (one-hot), or multi-match unencoded (many-hot) form.

• Multiple match resolution: Whenever the data being read matches data from more than 
one location in the CAM, a multiple match condition exists. The CAM supports this 
situation.

• Single/multiple match flags: These two optional outputs can inform the user whether a 
single or multiple match situation exists.
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• Multiple match address resolution: Depending on the parameter set by the user, the 
CAM can return either the highest or lowest matching address when a multiple match 
condition exists. This is only available when the address is converted to binary 
encoding or one-hot encoding.

• Initialization: The CAM supports initialization of binary and standard ternary CAMs with 
data from a MIF file, which is an ASCII file that contains the initial contents of the CAM. For 
CAMs using initialization, data entries in the MIF file must be in binary form. Standard 
ternary CAMs can be initialized with 0s, 1s, and Xs. Enhanced ternary CAMs cannot be 
initialized.

• Simultaneous read/write: The CAM supports optional simultaneous write and search 
operations, with an output to warn the user of possible collisions.

• Read warning flag: This flag indicates that the data applied to the CAM for a read 
operation matches the data that is currently being written into the CAM by the 
unfinished write operation. This flag works in both single- and multiple-match 
scenarios.

Interface The CAM input and output ports are shown in Figure 1.

The CAM core signals are listed in Table 1.

X-Ref Target - Figure 1

Figure 1: CAM Schematic

Table  1:  CAM Core Signals

Port Name Direction Description

CLK Input Clock: All CAM operations are synchronous 
to the rising-edge of the clock input.

EN (Optional) Input Enable: This is the control signal used to 
enable both write and read operations.

DIN[m(1):0] Input Data In: This is the data to be written to the 
CAM during a write operation. It is also the 
data to look up from the CAM during a read 
operation when simultaneous read/write 
option is not selected.

DATA_MASK[m:0] (Optional) Input Data Mask: This signal interacts with the DIN 
bus to create new bit values in ternary mode.

CMP_DIN[m:0] (Optional) Input Compare Data In: This is the data to look up 
from the CAM during a read operation if the 
simultaneous read/write option is selected.

X1151_01_010511

DIN[m:0]

WR_ADDR[log2n:0]

DATA_MASK[m:0]

CMP_DIN[m:0]

CMP_DATA_MASK[m:0]

CLK

EN

WE

MATCH_ADDR[j:0]

MULTIPLE_MATCH

SINGLE_MATCH

MATCH

BUSY

READ_WARNING

http://www.xilinx.com


Interface

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com  3

The CAM core signals are discussed in more detail here:

• CLK (Clock): The CAM module is fully synchronous with the rising edge of the clock input. 
All input pins have the setup time referenced to the CLK signal. All output ports have 
clock-to-out times referenced to the CLK signal.

• EN (Enable): When active, the optional enable signal allows the CAM to execute write and 
read operations. If the enable is inactive during normal operation of the core, the output 
pins hold their previous state and all internal states freeze. Any new input signal is ignored 
until the enable is driven active, at which time the CAM resumes all of its halted 
operations.

• DIN[m:0] (Data In Bus): The DIN bus provides the data to be written into or read from the 
CAM core, depending on the operation. If the simultaneous read/write option is selected, 
this bus is used only for the write operation, and the CMP_DIN bus is used exclusively for 
the read operation.

In ternary modes, this bus becomes one of the two input buses used to determine the bit 
value. In standard ternary mode, a 0 on both DIN and DATA_MASK designates a 0. A 1 on 
DIN and a 0 on DATA_MASK designates a 1. A 0 or a 1 on DIN and a 1 on DATA_MASK 
designates an X.

CMP_DATA_MASK[m:0] 
(Optional)

Input Compare Data Mask: This bus interacts with 
the CMP_DIN bus to create new bit values in 
ternary mode if the simultaneous read/write 
option is selected.

WE (Optional) Input Write Enable: This is the control signal used 
to enable transfer of data into the CAM from 
the DIN bus.

WR_ADDR[log2n(2):0] Input Write Address: This is the location to which 
the data on DIN is written into the CAM.

BUSY Output Busy: This signal Indicates that a write 
operation is currently being executed.

MATCH_ADDR[j:0] Output Match Address: This is the CAM address 
where matching data resides.

MATCH Output Match: This signal indicates that at least one 
location in the CAM contains the same data 
as the DIN bus (or CMP_DIN if in 
simultaneous read/write mode).

MULTIPLE_MATCH (Optional) Output Multiple Match: This signal indicates the 
existence of matching data in more than one 
location of the CAM.

SINGLE_MATCH (Optional) Output Single Match: This signal indicates the 
existence of matching data in only one 
location of the CAM.

READ_WARNING (Optional) Output Read Warning: This signal indicates that the 
data applied to the CAM for a read operation 
matches the data that is currently being 
written into the CAM by the unfinished write 
operation.

Notes: 
1. m = CAM width.
2. n = CAM depth.

Table  1:  CAM Core Signals (Cont’d)

Port Name Direction Description
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In enhanced ternary mode, a 0 on both DIN and DATA_MASK designates an X. A 1 on both 
buses designates a U. A 1 on DIN and a 0 on DATA_MASK designates a 1. A 0 on DIN and 
a 1 on DATA_MASK designates a 0.

• DATA_MASK[m:0] (Data In Mask Bus): This optional input bus is available when one of 
the ternary modes is selected. In standard ternary mode, this signal masks the DIN bus to 
create the don’t care bits. Bits that are 1 on DATA_MASK indicate the locations of the don’t 
care bits on the DIN bus.

In ternary modes, this signal becomes one of the two input buses used to determine the bit 
value. For further information, see the description of the DIN bus defined earlier in this 
section. In this application note, the DATA_MASK bus is treated as part of the DIN bus 
when a ternary CAM is selected.

• CMP_DIN[m:0] (Compare Data In Bus): When the simultaneous read/write option is 
selected, this optional input bus provides the data for the read operation of the CAM. 
When the simultaneous read/write option is not selected, this bus is not available.

In ternary modes, this bus becomes one of the two input buses used to determine the bit 
value during a read operation. For further information, see the description of DIN bus 
defined earlier in this section.

• CMP_DATA_MASK[m:0] (Compare Data Mask): This optional input bus is available 
when the CAM core is configured to support both simultaneous read and write operations 
and ternary mode. In standard ternary mode, this signal masks the CMP_DIN bus to 
create don’t care bits. Bits that are 1 on this bus indicate the locations of don’t care bits on 
the CMP_DIN bus.

In ternary modes, this bus becomes one of the two input buses used to determine the bit 
value. For more information, see the descriptions of the DIN and DATA_MASK buses 
defined earlier in this section. In this application note, the CMP_DATA_MASK bus is treated 
as part of the CMP_DIN bus when a ternary CAM is selected.

• WE (Write Enable): The optional write enable signal allows data on the DIN bus to be 
written into the CAM. When this signal is asserted, the contents on the DIN bus are written 
into the location selected by the write address bus WR_ADDR. This signal is not present if 
the read-only CAM option is selected. This signal is optional when the CAM initialization 
option is selected.

• WR_ADDR[log2n:0] (Write Address Bus): The optional write address bus determines 
the memory location to be written to during the CAM’s write operation. This bus is not 
present if the read-only CAM option is selected. This bus is optional when the CAM 
initialization option is selected.

• BUSY (Busy): The busy signal indicates that the write operation is currently being 
executed. It remains asserted until the multiple clock cycle write operation is completed. A 
new write operation cannot be started while this signal is active.

• MATCH_ADDR[j:0] (Match Address Bus): This output bus indicates the address that 
matches the contents of the DIN bus, or the CMP_DIN bus if the simultaneous read/write 
option is selected. The match address can be encoded (binary), single-match unencoded 
(one-hot), or multiple-match unencoded. The width j depends on the encoding type 
selected.

• MATCH (Match): The match signal is asserted for one clock cycle when data on the DIN 
bus matches data in one or more locations in the CAM. If the simultaneous read/write 
option is selected, data on the CMP_DIN bus is used to search for a match instead of the 
DIN bus.

• READ_WARNING (Read Warning): The optional read warning signal is asserted when 
data for the write in progress of the CAM is the same as data for the read initiated for the 
CAM. Because write operations take multiple cycles, writes performed prior to reads might 
not have been completed when the read is executed. READ_WARNING is asserted to let 
the user know that the match address and match signals do not reflect the results of the 
most recent write operation being executed.
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• MULTIPLE_MATCH (Multiple Match): The optional multiple match signal is asserted for 
one clock cycle when more than one match is present in the CAM. It remains inactive if 
there is one or no matches.

• SINGLE_MATCH (Single Match): The optional single match signal is asserted for one 
clock cycle when there is only one match in the CAM. This signal remains inactive if there 
is more than one match, or if there are no matches.

Functional 
Description

Operating Modes

The CAM has two operating modes: read operation and write operation.

Read Operation

The read operation of the CAM is synchronous to the rising edge of the clock. In a read 
operation, the CAM’s contents are searched for the data present on the DIN bus or the 
CMP_DIN bus (if the simultaneous read/write option is selected) at the rising edge of the clock. 
The enable (EN) signal must be asserted for the entire duration of the read operation.

If a read operation is applied to the CAM while the busy signal is asserted (which means a write 
operation is still being executed), the CAM location currently being written into appears to be 
empty. This location does not match any data that the user places on the DIN or CMP_DIN bus 
for the read operation. If the user applies both read and write operations on the same rising 
edge of the clock, the write operation starts its execution before the read operation, meaning 
that write addresses in the CAM are cleared before the CAM is searched for a read match.

The match address bus behaves differently, depending on the selections made in the 
CustomizeWrapper.pl script. If there is one match in the core, multi-match unencoded and 
single-match unencoded behave identically by setting the bit corresponding to the location of 
that match in the MATCH_ADDR bus active. Similarly, the binary encoded MATCH_ADDR 
contains the encoded version of the active bits. When there are multiple matches in the core, 
single-match unencoded and binary encoded returns the match of the highest priority location, 
which can be selected as the lowest or highest address. Multi-match unencoded has every bit 
corresponding to the location of the matches in the MATCH_ADDR bus active.

Write Operation

The write operation for the CAM is synchronous to the rising edge of the clock. The data on the 
DIN port is written into the memory location selected by the WR_ADDR port when both WE and 
EN signals are active. The WE signal is required to be asserted for the initial clock cycle of the 
write operation applied to the CAM by the user.

On the first clock cycle of a write operation, the old data at the WR_ADDR location is removed 
from the memory, and on the last clock cycle of a write operation, new data is written to the 
same location in the memory. During the first and middle clock cycles of a write operation, the 
memory location being written to behaves as an empty memory location.

During a write operation, the enable signal must remain active for the entire write cycle. If 
enable is deactivated at any time during the write operation, the write cycle stops and remains 
at that stage until enable is activated again.

Block RAM-Based Implementation

A CAM implemented with block SelectRAM™ memory primitives has a single clock cycle 
latency on its read operation, and two clock cycle latency on its write operation.

Read Operation

Figure 2 shows consecutive read operations of a block SelectRAM memory CAM with the 
second operation not having a match. Three of the possible configurations for the 
MATCH_ADDR and MATCH signals are displayed. On the second rising edge of CLK, a read of 

http://www.xilinx.com


Functional Description

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com  6

data 01 is performed. On the third rising edge of CLK, a MATCH is reported at MATCH_ADDR 
01 (unencoded), or MATCH_ADDR 00 (encoded), for the input data 01. At the same time, 
another read is performed for the data 11. On the fourth rising edge of CLK, no MATCH is 
reported for the input data of 11. The remaining CLK edges show multiple reads of the input 
data 10, with the CAM core reporting a MATCH for this data at MATCH_ADDR 10 
(unencoded), or MATCH_ADDR 01 (encoded).

By default, the block SelectRAM memory CAM has a single-clock read latency. However, an 
extra clock cycle can be added to the read latency by selecting the Register Outputs option in 
the CustomizeWrapper.pl script. New data written into the CAM is available to be read on 
the second rising edge of the clock after a write operation begins.

Write Operation

Figure 3 shows three consecutive write operations of a block SelectRAM memory CAM with the 
simultaneous read/write option enabled. The figure also shows when the new data is available 
to be read by the read operation. The block SelectRAM Memory CAM has a two clock cycle 
write latency. When executing consecutive write operations, each write operation must be two 
clock cycles apart.

The following describes the events shown in Figure 3:

1. A write of data 01 to WR_ADDR of 00 is performed on the second rising edge of CLK. On 
the same CLK edge, a read of the same data 01 is attempted. Because the write operation 
takes precedence, no MATCH is reported for the read of data 01 on the next CLK cycle.

X-Ref Target - Figure 2

Figure 2: Block SelectRAM Memory Read Operation
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X-Ref Target - Figure 3

Figure 3: Block SelectRAM Memory Write Operation
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2. On the third rising edge of CLK, the BUSY signal is asserted, indicating a write is in 
progress (from the previous clock cycle) and no write operation can occur.

3. The fourth rising edge of CLK shows a write of data 10 to WR_ADDR 01, with a read 
attempted on CMP_DIN of the same data at the same time. Again, no MATCH is reported 
for the read of data 10 on the next cycle.

4. The fifth rising edge of CLK shows another read attempt of data 10, with no MATCH 
reported the next clock cycle because the write operation from the previous cycle is still in 
progress.

5. On the sixth rising edge of CLK, a write of data 11 is performed to WR_ADDR 10. At the 
same time, a third read attempt of data 10 is performed. This time, a MATCH for the read 
data is reported on the next clock edge because the simultaneous write was not the same 
data that was read.

6. The seventh rising edge of CLK shows a read attempt of data 11. Because the write 
operation for the same data is still in progress (BUSY is asserted), no MATCH is reported.

7. On the eighth rising edge of CLK, a read is again attempted of data 11. This time, a MATCH 
is reported on the next clock edge at MATCH_ADDR 10.

SRL16E-Based Implementation

A CAM implemented with SRL16E primitives has a single clock cycle latency on its read 
operation and 16 clock cycle latency on its write operation.

Read Operation

Figure 4 illustrates three consecutive read operations of an SRL16E-based CAM with the 
second operation not having a match. Two of the possible configurations for the MATCH_ADDR 
and MATCH signals are displayed.

The SRL16E-based CAM asserts the MATCH signal on the first rising clock edge after data is 
placed on the DIN bus by the user if there is at least one location in the CAM with matching 
data. New data written into the CAM is available to be read on the 17th rising edge of the clock 
after write operation begins.

Write Operation

Figure 5 shows two consecutive write operations of an SRL16E-based CAM. The figure also 
shows when the new data is available to be read by the read operation. The SRL16E-based 
CAM has a 16 clock cycle write latency. When executing consecutive write operations, each 
write operation must be 16 clock cycles apart.

On CLK edge 1, the data 01 is written to address 00. Beginning on CLK edge 2, a read attempt 
of the same data 01 is begun. No MATCH for this data is reported until CLK edge 17 because 
it takes 16 clock cycles for the write to complete. The MATCH for the read data is reported on 
CLK edge 17 with an unencoded MATCH_ADDR of 0001. The original WR_ADDR was 00 

X-Ref Target - Figure 4

Figure 4: SRL16E Read Operation
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(binary). Because this is the first address index of the CAM, the unencoded (one-hot) 
MATCH_ADDR for that location is 0001.

When writing and reading the CAM, two ternary mode options are supported using ternary bits 
0, 1, X, and optionally U:

• Standard ternary mode: In this mode, bit X matches either 1, 0, or X (1010 = 1X1X = 
10XX) and is referred to as a don’t care bit. This example shows how to write and search 
for ternary values (Xs):

• To write 1X1X, DIN = 1010, 1110, 1011, or 1111 and DATA_MASK = 0101.

• To search for 1X1X, DIN and DATA_MASK use the same values as above.

Note: If the CAM already has a ternary value written to it, that ternary bit (X) matches 0, 1, and 
X in the input buses.

• Enhanced Ternary Mode: In this mode, bit X also matches either 1, 0, or X (1010 = 1X1X 
= 10XX) and is also referred to as a don’t care bit. Bit U does not match any of the four 
possible bit values 1, 0, X, or U, and is referred to as an unmatchable bit.

Hardware 
Implementation

General Overview

The CAM design uses the same FPGA memory blocks as a traditional memory, but there are 
key differences between the two. For a traditional memory, the user provides the input data and 
address for a write operation. For a read operation, an address is provided, and the data stored 
at that address is read out. For a CAM, the write operation is the same as traditional memory. 
However, the read operation differs in that the user provides a data input to look up the address 
where that data is stored.

Just as a traditional memory only stores one data word at each address, each CAM address 
can only store one unique data. However, a particular data can be stored at multiple addresses.

To accomplish this functionality, a number of functional blocks are required in addition to the 
standard memory (SRL16E or block RAM) blocks. Before reading or writing to the memory, the 
CAM must process the input data and address to map to the appropriate memory block, and 
perform certain operations like ternary encoding, if required. At the memory output, the CAM 
must interpret which address(es) contain the data, generate the MATCH flags, and register the 
outputs. All of these functions are managed by a control block. The basic data flow through 
each block in the CAM is shown in Figure 6.

X-Ref Target - Figure 5

Figure 5: SRL16E Write Operation
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RAM-Based Implementation

Introduction

When using RAM for the CAM implementation, the block memory behaves like a large grid 
where each element in the grid represents a particular mapping of a CAM address to a 
particular data value. In other words, every possible data/address combination is represented 
by one RAM bit. A simple example of an 8 x 3 (n = 8 words deep, m = 3 bits wide) CAM is shown 
in Table 2.

A CAM whose data input is m bits wide requires a memory that is 2m deep to accommodate all 
2m possible values of that data input. An 8 x 3 (n x m) CAM therefore requires a RAM that is 
23 = 8 words deep. This same CAM requires a RAM of width n = 8 to accommodate 8 possible 
address values. To summarize, a CAM that is m data input bits wide requires a memory that is 
2m deep, and a CAM that has n addresses requires a memory that is n bits wide.

Each row in the RAM shown in Table 2 represents one possible mapping of the input data bits 
to the CAM contents. A CAM with a 3-bit data input has 8 possible unique data bit combinations 
and thus requires 8 rows (or “words”) in a RAM (in other words, the required CAM depth is 8). 
Similarly, a CAM with a depth of 8 addresses requires 8 columns (or data bits) in the RAM. If the 
CAM had a depth of 16 addresses, 16 columns would be required.

X-Ref Target - Figure 6

Figure 6: CAM Data Flow

X1151_06_100610

Ternary
Encode
(SRL)

Erase Memory
(Block RAM)

Ternary
Input (SRL)

Input

Memory
(Block RAM 

or SRL)

Control

Match
Encode

Register
Outputs

Decoder
(SRL)

Table  2:  RAM Match Grid

RAM Data/CAM Address

RAM 
Address/

CAM 
Data

0 1 2 3 4 5 6 7

000 0 1 0 0 0 0 0 0

001 0 0 0 0 0 1 0 0

010 0 0 0 0 0 0 0 0

011 0 0 0 1 0 0 0 0

100 1 0 0 0 0 0 0 1

101 0 0 0 0 0 0 0 0

110 0 0 1 0 0 0 0 0

111 0 0 0 0 0 0 0 0
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The value or bit at each grid location is set to 1 if the data is stored at that address; otherwise, 
it is set to 0. The example in Table 2 shows a CAM that already has data stored within it, either 
by writing to the CAM or by using a MIF file to initialize the contents during implementation (see 
Creating a MIF File (Specifying CAM Contents), page 27.These are the contents of the CAM 
described in Table 2:

• CAM data 000 is stored at address 1.

• CAM data 001 is stored at address 5.

• CAM data 011 is stored at address 3.

• CAM data 100 is stored at address 0 and 7.

• CAM data 110 is stored at address 2.

• CAM data 010, 111, and 101 is not stored at any addresses.

• CAM addresses 4 and 6 do not store any data.

As discussed in General Overview, page 8, a single data can be stored at multiple addresses, 
but a single address can only store a single data value.

Write Operation Overview

The design for the two clock cycle write operation is from Using Block RAM for High 
Performance Read/Write CAMs [Ref 1]. The first clock cycle is the erase operation, which 
removes the data previously stored at the write address by clearing the bit at that location in the 
grid. The second cycle performs the write, setting to 1 the bit at the intersection of the address 
and data being written.

The initial erase cycle before the write is necessary to avoid the scenario of multiple data at the 
same address. Using Table 2 as an example, consider that address 7 previously had data 100 
and the new data 010 needs to be written to this address. The intersection of 100 and the 
address currently has a 1. If this is not erased, after writing data 010, the intersection of data 
010 and this address will also have a 1, indicating the impossible scenario of both data 100 
and 010 at this address.

Read Operation Overview

The read operation reads the CAM address bits from the memory stored under the input read 
data. The output represents one bit for each possible address. For every location that contains 
or matches the data that is presented, this bit is set to 1. If a match is found, the MATCH flag is 
asserted and the matching address is presented on the MATCH_ADDR port.

It is possible for more than one 1 to exist in the bits read from the memory. If this occurs, the 
data that is being searched is stored at more than one address. If the MULTIPLE_MATCH flag 
option is enabled, the flag is asserted.

Initialization

A text file with the MIF extension is used to initialize the block RAM primitives. The contents of 
this file are in binary form and are parsed into CAM data-width words in multiple stages in the 
RTL. Initialization is explained in detail within the VHDL code itself.

Basic CAM Configurations Using Block RAM Primitives (Virtex-6 FPGAs)

Many different CAM configurations are possible using a dual-port block RAM, depending on the 
size of the block RAM primitive available in the FPGA. In a Virtex-6 device, the RAMB36 has 
32 Kbits of memory available for a CAM. Using this available space, a 32 x 10 CAM is the most 
efficient CAM primitive that can be built from a single RAMB36 block RAM. The sizing and 
connections for each port of the block RAM for this size CAM are shown in Figure 7. Port A of 
the block RAM is used for writes (if enabled), and port B is used for reads.

Note: The Virtex-6/Virtex-6L FPGA case using RAMB36 primitives is provided as an example. 
Virtex-5 devices also contain RAMB36 primitives, so larger CAMs are built in the same way as in 
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Virtex-6 devices, with multiple blocks of 32 x 10 CAMs. Spartan-6, Spartan-3, and Virtex-4 devices 
contain RAMB18 or RAMB16 primitives. Larger CAMs for these devices use multiple blocks of 32 x 9 
CAMs.

Larger CAM Depths and Widths

To achieve deeper and wider CAMs, multiple 32 x 10 CAM blocks are concatenated in width 
and depth, respectively.

Deeper CAMs

To achieve a CAM depth greater than 32 words, multiple basic CAM blocks are combined in 
parallel. Figure 8 shows the configuration of the basic CAM for this purpose. The CAM size 
shown in Figure 8 is 128 bits deep by 10 bits wide.

Wider CAMs

To achieve a CAM width greater than 10 bits wide for Virtex-6 FPGAs, multiple basic CAM block 
outputs are combined using AND gates. Figure 9 shows the configuration of the basic CAM for 
this purpose. The AND gates on each MATCH bit output are required because a match here is 
defined as both the lower data bits AND the upper data bits matching the read input on the 
same address. The CAM size shown in Figure 9 is 32 bits deep by 20 bits wide.

X-Ref Target - Figure 7

Figure 7: RAMB36 Connection for 32 x 10 CAM

X-Ref Target - Figure 8

Figure 8: CAM Depth Expansion (128 x 10 CAM)
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Read Implementation

For a simple CAM using a single block RAM primitive, the read data is presented on the 
address input of port B (ADDRB) of the block RAM. For a more complex CAM using multiple 
block RAM primitives, all port Bs of the block memory are addressed by the CAM read data 
(DIN or CMP_DIN[9:0] in Figure 10). Figure 10 shows the logic connection for a CAM using 
more than one block RAM primitive (the CAM size shown in Figure 10 is 64 bits deep by 20 bits 
wide). The output of the block RAM is a series of 1s and 0s that indicate the address(es) which 
that data matches. The match logic uses this information to calculate how many CAM 
addresses matched the data, and the lowest/highest address that matched.

Note: If the simultaneous read/write option (parameter c_has_cmp_din) is selected, CMP_DIN provides 
the read address (ADDRB) to the read port and the DIN bus is used for write data; otherwise, the DIN 
input bus is connected to ADDRB.

X-Ref Target - Figure 9

Figure 9: CAM Width Expansion (32 x 20 CAM)
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Erase/Write Implementation

As described in Write Operation Overview, page 10, the write operation is performed in two 
clock cycles: the erase cycle and the write cycle. Figure 11 shows the write logic to implement 
this. On the first clock cycle, the previous contents of the memory location are erased. On the 
second clock cycle, the new contents are written to the memory location.

As shown in Figure 11, the DIN data input of the CAM passes through a distributed RAM block 
called the Erase RAM. The data input also bypasses the Erase RAM and is used as an input to 
a multiplexer. The multiplexer selects between the DIN input and the DOUT output of the Erase 
RAM.

For a write operation, the data currently stored at the write address must be erased. During the 
first clock cycle, the value from the RAM ERASE memory is read combinatorially from the 
specified address. The data accessed from this RAM is the last data stored in the CAM at that 
address. The write/erase signal is then cleared to 0, and the output of the erase RAM is 
combined with the address and used to index a single bit in the block RAM. That location is 
then cleared to 0. This effectively removes the previous data stored at that address.

On the second clock cycle, the new data and address input is passed through directly to the 
block memory. At the new data/address location specified, a 1 is written by setting a 1 on the 
write/erase input shown in Figure 11. On the same clock cycle, the data is also stored in the 
RAM Erase memory in preparation for the next erase cycle. The basic implementation of this 
logic for a 32 x 10 CAM is shown in Figure 11. The Erase RAM size is always the same width 
and depth as the CAM core.

X-Ref Target - Figure 10

Figure 10: CAM Width and Depth Expansion (64 x 20 CAM)
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SRL16E-Based Implementation

Introduction

Using an SRL16E as a CAM is in most ways the same as using a block RAM as a CAM. The 
SRL16E can be thought of as a 16-bit deep by 1-bit wide RAM, which translates into a 4-bit 
wide by 1-bit deep CAM. Because one SRL16E produces a CAM of 1 address deep, each 
SRL16E can only store one matchable data value. Table 3 shows an example in which the data 
value 0110 is stored in the single address space represented by this particular SRL16E block.

X-Ref Target - Figure 11

Figure 11: CAM Core with Erase RAM Connection
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Table  3:  SRL CAM Storage

CAM Data
(SRL Address) Match?

0000 0

0001 0

0010 0

0011 0

0100 0

0101 0

0110 1

0111 0

1000 0
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Write Operation

As a shift register, an SRL16E is written by shifting data in one bit at a time. Because an 
SRL16E contains 16 bits of data, a write operation takes 16 cycles to complete.

In an SRL16E implementation, each bit of the SRL16E is used to encode 4 bits of input data 
with a depth of 1 word. Because each SRL16E represents one address space, only one bit in 
each of the SRL16E can be a 1 at any time. Thus, a write to the SRL16E must rewrite all 16 bits 
to ensure that only one match is present. If the input data matches the index of one of the words 
in the SRL16E, a 1 is written into the SRL16E; otherwise, a 0 is written. Because any previous 
match data stored in the SRL16E must be overwritten with the new data, all 16 bits of the 
SRL16E must be shifted out by writing 16 bits of new data. Therefore, a write operation always 
takes 16 clock cycles.

Read Operation

For a read, the read data is placed on the address lines of the SRL16E. If a 1 is stored at that 
address, the data presented is stored at the single address space represented by that SRL16E, 
and thus a match occurs. Because there is only one 1 bit stored in the SRL16E at a time, the 
match signal is active only when the location addressed by the input data contains a 1. The 
read from the SRL16E takes one clock cycle.

Initialization

A text file with a .mif extension is used to initialize the SRL16Es. The contents of the file are 
parsed into CAM data-width words. These words are then encoded, 4 bits at a time, into the 
16-bit value to be stored in each SRL16E.

Building Wider and Deeper CAMs using SRL16E primitives

Implementing a CAM using SRL16s makes use of many components found within each FPGA 
slice. As shown in Figure 12, an 8 x 1 CAM is built using two SRL16E primitives and the 
MUXCYs located in the slice. Adding more SRL16E/MUXCY pairs allows for extension of the 
CAM width.

1001 0

1010 0

1011 0

1100 0

1101 0

1110 0

1111 0

Table  3:  SRL CAM Storage (Cont’d)

CAM Data
(SRL Address) Match?
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To extend the depth of a CAM built with SRL16Es, each group of 4 input data bits must connect 
to multiple SRL16Es in parallel. The WR_ADDR input is decoded to one-hot form to drive the 
individual write enables of each SRL16E. Each Q output of the SRL16Es creates a MATCHES 
bus that is passed to the Match Encoder block for processing. Figure 13 shows an example of 
this for a 4-bit wide by 3-bit deep CAM.

Details of Read Implementation

For a read, the input data is the address of the SRL16E as shown in Figure 14. If the content of 
the SRL16E at the address is 1, there is a match. The output of the SRL16E is used to select 
either a 1 or 0 using the select line of a MUXCY. This effectively uses the multiplexer as an AND 

X-Ref Target - Figure 12

Figure 12: 8-Bit Wide by 1-Bit Deep CAM in FPGA Slice
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X-Ref Target - Figure 13

Figure 13: 4-Bit Wide by 3-Bit Deep CAM Using SRL16E
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gate that is disabled during a write. The value out of the last MUXCY indicates whether or not 
there was a match of the input data on this 8-bit word.

Note: With WE connected to the input of MUXCY, the user is able to read while waiting for a write 
operation to finish. Therefore, the address being written to is not included in the match operation because 
the read and write can occur simultaneously.

Details of Write Implementation

The CAM address is decoded into a one-hot write enable bus that enables each CAM word for 
writing (Figure 15). It takes 16 clock cycles to shift in the result of the comparator into the 
SRL16E. The data input is compared with the value of the counter. When a match occurs, a 1 
is shifted into the SRL16E. If there is no match, a 0 is shifted in. Each SRL16E has its own 
comparator to determine when to write a 1; this allows all SRL16s that make up one CAM 
address space to be written in parallel.

X-Ref Target - Figure 14

Figure 14: 8-Bit Wide by 1-Bit Deep CAM Read Operation
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The timing diagram for a typical write operation is shown in Figure 16. The WR_ADDR and DIN 
inputs are always used in a write operation. After WE is asserted, a write operation takes 16 
rising clock edges to complete. The BUSY flag is asserted after a write operation has begun, 
and is deasserted on completion of the write operation. Whenever BUSY is Low, a write 
operation can begin on the next rising edge of the clock.

The WE input is ignored while BUSY is High. This means that it is impossible to interrupt a write 
operation after it has begun. Figure 17 demonstrates this. The behavior in this case is identical 
to that in Figure 16. Because of this feature, WE can remain High and a new write operation 
can begin immediately after this one concludes.

X-Ref Target - Figure 15

Figure 15: 8-Bit CAM Word Write Operation (16 Clock Cycles)

X-Ref Target - Figure 16

Figure 16: Timing Diagram for Write Operation

X-Ref Target - Figure 17

Figure 17: Timing Diagram for Write Operation with WE Held High
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Like WE, the WR_ADDR and DIN values are stored internally, so they too are ignored after a 
write operation has begun. Therefore, Figure 18 shows a third scenario that would produce 
identical results to Figure 16 and Figure 17. Because DIN can change after the write operation 
has begun, DIN can be used to read from the CAM while the write operation is in progress.

Ternary Modes

A CAM with ternary modes enabled allows the use of X and U values in the CAM. Because 
more input combinations must be supported, the largest ternary CAM that can be implemented 
in a single SRL16E is smaller than for a non-ternary CAM. Standard ternary mode allows each 
bit to be in one of three states: 0, 1, and X. Each data bit in an enhanced ternary mode CAM 
can be in one of four states: 0, 1, X, and U. These values are encoded at the ternary CAM input 
using a combination of data bits (0 or 1) and mask bits (0 or 1).

For a 4-bit wide by 1-word deep non-ternary CAM, a single SRL16E can be used to store 4 bits 
of data at a single address. For ternary modes, a two-bit data input in combination with the 
two-bit mask value is encoded as a 4-bit word (see Table 4 and Table 5). This means that a 
single SRL16E can only be used to build a 2-bit wide by 1-word deep ternary mode CAM. 
Furthermore, unlike the non-ternary CAMs that can only represent a single 1 (or match) value 
in each CAM address location (i.e., each SRL16E), each ternary CAM address location can 
represent multiple input data matches. This is because a data input of 1X, for example, can 
match multiple two-bit values (10 and 11 in this case). The ternary mode CAM (using 
SRL16Es) performs both ternary reads and ternary writes.

Standard Ternary Encoder

The ternary encoder outputs four bits. Each of these four bits indicates whether or not a 
particular 2-bit encoded value can match the 2-bit ternary value being input. For example, for a 
ternary CAM implemented in a single SRL16E, the A bit is High (logic 1) whenever the ternary 
value can match 00. The ternary values that match 00 would be 00, 0X, X0, and XX.

Note: Ternary CAMs do not use all the possible addresses in an SRL16E.

The ternary encoder map is shown in Table 4.

X-Ref Target - Figure 18

Figure 18: Timing Diagram for Write Operation with Changing WR_ADDR and DIN
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Table  4:  Standard Ternary Encoder Mapping

Input Output (Address Inputs to SRL16E)

Ternary Value Data Input (d1d0) Data Mask 
(m1m0) A (00) B (01) C (10) D (11) ABCD 

(Addr[3:0])

00 00 00 1 0 0 0 1000

01 01 00 0 1 0 0 0100

0X 00,01 01 1 1 0 0 1100

10 10 00 0 0 1 0 0010

11 11 00 0 0 0 1 0001
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The standard ternary encoder is built using these equations.

Equation 1

Equation 2

Equation 3

Equation 4

Enhanced Ternary Encoder

The ternary encoder outputs four bits. Each of these four bits indicates whether or not a 
particular 2-bit encoded value matches the 2-bit enhanced ternary value being input. For 
example, the A bit is High (logic 1) whenever the ternary value can match 00. Any input with a 
value of U is mapped to SRL16E address 0000, and this address is never set to 1 because it 
is defined as unmatchable.

The enhanced ternary encoder map is shown in Table 5.

1X 10,11 01 0 0 1 1 0011

X0 00,10 10 1 0 1 0 1010

X1 01,11 10 0 1 0 1 0101

XX 00, 01, 10, 11 11 1 1 1 1 1111

Table  4:  Standard Ternary Encoder Mapping (Cont’d)

Input Output (Address Inputs to SRL16E)

A d1d0 m1m0 d1m0 d0m1+ + +=

B d1d0 m1m0 d1m0 d0m1+ + +=

C d1d0 m1m0 d1m0 d0m1+ + +=

D d1d0 m1m0 d1m0 d0m1+ + +=

Table  5:  Enhanced Ternary Encoder Mapping

Input Output

Ternary Value Data Input (d1d0) Data Mask (m1m0) A (00) B (01) C (10) D (11) ABCD 
(Addr[3:0])

00 00 11 1 0 0 0 1000

01 01 10 0 1 0 0 0100

0X 00 10 1 1 0 0 1100

0U 01 11 0 0 0 0 0000

10 10 01 0 0 1 0 0010

11 11 00 0 0 0 1 0001

1X 10 00 0 0 1 1 0011

1U 11 01 0 0 0 0 0000

X0 00 01 1 0 1 0 1010

X1 01 00 0 1 0 1 0101

XX 00 00 1 1 1 1 1111

XU 01 01 0 0 0 0 0000

U0 10 11 0 0 0 0 0000

U1 11 10 0 0 0 0 0000

UX 10 10 0 0 0 0 0000

UU 11 11 0 0 0 0 0000
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The enhanced ternary encoder can be built using these equations.

Equation 5

Equation 6

Equation 7

Equation 8

Ternary Write Cycle

Just like a standard SRL16E-based CAM, a ternary CAM write operation is performed in 16 
clock cycles. As with the standard CAM, the ternary CAM uses a counter that counts from 15 
down to 0, and comparator logic that determines the clock cycles on which to write a 1 or 0 into 
the SRL16E. Figure 19 shows an enhanced ternary CAM write operation.

The logic for the comparator is:

Equation 9

The comparator logic compares the value of the counter to the vector ABCD from the ternary 
encoder in bitwise fashion and asserts a 1 when there is a match between the two. This 
ensures that a value of 1 is set on each data value represented by the SRL16E that is 
equivalent to the write input, as shown in Table 4 and Table 5. In Figure 19, the ternary data 
input is 1X, which can be represented by a data input of 10 and a data mask of 01–essentially 
the vector ABCD = 0011. When either of the two least significant bits of the counter are High 
(logic 1), the output bit is asserted. The comparator logic is the same for both standard ternary 
and enhanced ternary CAMs—only the encoder differs between the two modes.

Ternary Read Operation

The read operation for a ternary CAM is essentially the same as the standard SRL16E-based 
CAM, except for the use of the ternary encoder. As shown in Figure 20, the ternary value (data 
Input and data mask) is converted into bits A, B, C, and D. ABCD are used as the address into 
the SRL16E. The output of the SRL16E is High (logic 1) if the ternary value (data input and 
data mask) are a match with the data stored at the CAM address served by this SRL16E. In this 

X-Ref Target - Figure 19

Figure 19: SRL16E Enhanced Ternary Write
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example, the SRL16E was initially written with a value of 01. Thus, a read of value 01, 0X, X1, 
or XX creates a match at the address represented by this SRL16E.This logic is repeated for 
each CAM address.

Reference 
Design

The reference design files for this application note can be downloaded from:

https://secure.xilinx.com/webreg/clickthrough.do?cid=154257.

The reference design checklist is shown in Table 6.

X-Ref Target - Figure 20

Figure 20: SRL16E Standard Ternary Read
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Table  6:  Reference Design Checklist

Parameter Description

General

Developer Name Xilinx

Target Devices (Stepping Level, ES, 
Production, Speed Grades)

Spartan-3, Xilinx Automotive (XA) Spartan-3, 
Spartan-3E, XA Spartan-3E, Spartan-3A, 
Spartan-3A DSP, Spartan-6, Virtex-4, Virtex-5, 
and Virtex-6/6L FPGAs

Source Code Provided Yes

Source Code Format VHDL

Design Uses Code/IP from Existing Application 
Note, Reference Designs, Third Party, or 
CORE Generator™ Software

Yes

Simulation

Functional Simulation Performed Yes

Timing Simulation Performed Yes

Testbench Used for Functional and Timing 
Simulations Provided

No

Testbench Format N/A

Simulator Software/Version Used ModelSim, version 6.5d

SPICE/IBIS Simulations No

Implementation
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The reference design contains VHDL source code and Perl scripts to customize the design, 
synthesize it in XST, and implement it through NGDBuild, MAP, and PAR. Table 7 defines the 
reference design source files, and Table 8 defines the scripts, project files, and documentation.

Synthesis Software Tools/Version Used XST, version 13.1

Implementation Software Tools/Versions Used ISE software, version 13.1

Static Timing Analysis Performed No

Hardware Verification

Hardware Verified No

Hardware Platform Used for Verification N/A

Table  7:  CAM Design Files

Filename Description

cam_wrapper.vhd This is a customizable VHDL top-level core wrapper 
file with a simplified set of 15 generics.

cam_top.vhd This core wrapper file translates the 15 simplified 
generics in the top-level wrapper file 
(cam_wrapper.vhd) to the full set of 27 generics in 
the top-level core file (cam_rtl.vhd).

cam_rtl.vhd This top-level synthesizable core file instantiates all 
other submodules and uses an expanded set of 
generics.

cam_pkg.vhd This is a package file containing commonly used 
constants and functions.(1)

cam_init_file_pack_xst.vhd This file contains procedures for memory 
initialization, and reading and writing files.

init.mif This text file contains a CAM-width x CAM-depth 
table for initializing the CAM, if applicable.

cam_regouts.vhd This file registers the CAM outputs.

cam_control.vhd This file generates control signals for the CAM, 
including an internal write enable and write counter, 
and user BUSY and READ_WARNING signals.(1)

cam_match_enc.vhd This file contains the address match logic.

cam_mem.vhd This file instantiates either block RAM or SRL16E 
memory based on code customization.

cam_mem_blk.vhd For block RAM-based CAM, this file cascades 
multiple block RAM columns into rows for the final 
CAM width.(1)

cam_mem_blk_extdepth.vhd For block RAM-based CAM, this file cascades 
multiple block RAMs into columns for the final CAM 
depth.

cam_mem_blk_extdepth_prim.vhd For block RAM-based CAM, this file instantiates 
individual block RAM primitives depending on the 
FPGA architecture.(1)

dmem.vhd For block RAM-based CAM, this file infers distributed 
memory for the erase RAM.

Table  6:  Reference Design Checklist (Cont’d)

Parameter Description
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cam_input.vhd This file registers data input buses and instantiates 
ternary encoders for both read and write ports as 
necessary.

cam_input_ternary.vhd This file pads the DIN and DATA_MASK inputs and 
instantiates the ternary encoder.

cam_input_ternary_ternenc.vhd This file encodes DIN and DATA_MASK input buses 
as ternary encoded outputs for storage in memory.

cam_decoder.vhd For SRL16E-based CAM, this file selects which 
256-word block to write.

cam_mem_srl16_wrcomp.vhd For SRL16E-based CAM, this is the write 
comparator for standard (non-ternary) mode.

cam_mem_srl16_ternwrcomp.vhd For SRL16E-based CAM, this is the write 
comparator for ternary mode.

cam_mem_srl16.vhd For SRL16E-based CAM, this file cascades c_width 
x 256-word deep blocks up to the final depth of the 
CAM, plus comparators and block decoder.

cam_mem_srl16_block.vhd For SRL16E-based CAM, this file cascades multiple 
c_width x 1 word deep blocks into blocks of up to 256 
words deep.

cam_mem_srl16_block_word.vhd For SRL16E-based CAM, this file instantiates and 
cascades SRL16E primitives for c_width x 1 word of 
the CAM.(1)

Notes: 
1. The HDL source file contains architecture-specific component instantiations and/or coding and might 

require modification to support newer architectures than those listed in Table 6, page 22.

Table  8:  CAM Documentation and Script Files

Filename Description

README_XAPP1151.txt This file describes the reference design files and script files, 
and contains instructions for executing the provided scripts.

CustomizeWrapper.pl This interactive Perl script is used to customize the top-level 
core wrapper file cam_wrapper.vhd.

WrapperTemplate.txt This is the template for the customizable VHDL top-level core 
wrapper file cam_wrapper.vhd used by the script.

RunXST.pl This Perl script synthesizes the wrapper and source files using 
XST.

vhdl_xst.scr This XST script file contains the XST options for synthesis, 
including the target part.

vhdl_xst.prj This XST project file contains the relative paths to the 
wrappers and source files to be synthesized.

Implement.pl This Perl script runs NGDBuild, MAP, and PAR on the 
synthesized netlist.

Table  7:  CAM Design Files (Cont’d)

Filename Description
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Figure 21 shows the RTL hierarchy.

Compilation Parameters

The CAM reference design is parameterizable with a set of 15 simplified generics. An 
interactive command-line Perl script called CustomizeWrapper.pl is provided to facilitate 
configuration of these parameters. This script creates a top-level core wrapper file with the 
desired configuration. For additional control over the CAM implementation, the user can 
manually edit the 27 complete generics in the top-level core file (cam_rtl.vhd) and 
implement the design without the wrapper files (cam_wrapper.vhd and cam_top.vhd). 
Table 9 describes the full set of generics present in the top-level core file and the simplified set 
present in the top-level core wrapper file.

X-Ref Target - Figure 21

Figure 21: RTL Hierarchy

X1151_21_100610
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cam_pkg
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cam_wrapper
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cam_rtl
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cam_mem_srl16_block

cam_mem_blk_srl16_block_word

dmem

cam_mem_blk
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cam_mem_blk_extdepth_prim
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Table  9:  RTL Parameters

Generic Simplified Generics Description

C_ADDR_TYPE C_ADDR_TYPE 0 = Binary encoded.
1 = Single match 
unencoded.
2 = Multi-match 
unencoded.

C_CMP_DATA_MASK_WIDTH C_WIDTH Range: 1–512.

C_CMP_DIN_WIDTH C_WIDTH Range: 1–512.

C_DATA_MASK_WIDTH C_WIDTH Range: 1–512.

C_DEPTH C_DEPTH Range: 16–4096.

C_DIN_WIDTH C_WIDTH Range: 1–512.

 C_FAMILY C_FAMILY Allowed values: virtex4, 
virtex5, virtex6, virtex6l, 
spartan3, spartan3e, 
spartan3a, 
spartan3adsp, 
aspartan3, aspartan3e, 
spartan6.

 C_HAS_CMP_DATA_MASK If C_TERNARY_MODE =1 or 2 
and C_HAS_CMP_DIN = 1, 
set to 1

1 indicates that the 
CMP_DATA_MASK port 
is present.

 C_HAS_CMP_DIN C_HAS_CMP_DIN 1 indicates that the 
CMP_DIN port is 
present.

 C_HAS_DATA_MASK If C_TERNARY_MODE =1 or 2, 
set to 1

1 indicates that the 
DATA_MASK port is 
present.

 C_HAS_EN C_HAS_EN 1 indicates that the EN 
port is present.

 C_HAS_MULTIPLE_MATCH C_HAS_MULTIPLE_MATCH 1 indicates 
MULTIPLE_MATCH 
port present.

 C_HAS_READ_WARNING C_HAS_READ_WARNING 1 indicates that the 
READ_WARNING port 
is present.

 C_HAS_SINGLE_MATCH C_HAS_SINGLE_MATCH 1 indicates that the 
SINGLE_MATCH port 
is present.

 C_HAS_WE C_HAS_WE 1 indicates that the 
CAM is writeable (WE 
port present).
0 indicates that it is read 
only.

 C_HAS_WR_ADDR C_HAS_WE 1 indicates that the 
WR_ADDR port is 
present.

 C_MATCH_ADDR_WIDTH If C_ADDR_TYPE = 0, 
log2roundup(C_DEPTH)
If C_ADDR_TYPE = 1 or 2, 
C_DEPTH

If C_ADDR_TYPE = 0, 
range: 4–12.
If C_ADDR_TYPE = 1 
or 2, range: 16–4096.
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Creating a MIF File (Specifying CAM Contents)

The CAM reference design provides the option of initializing the memory contents during 
synthesis of the core in XST. For a read-only CAM, a MIF file is required during synthesis of the 
core.

The MIF file is a plain-text ASCII file written in binary with each line corresponding to an 
address in the CAM. The MIF file is written in the same way as a MIF file for a standard RAM. 
Because of this, the MIF file must have a number of lines equal to the depth of the CAM being 
used (n), and each line must have a number of binary digits equal to the data width (DIN or m) 
of the CAM. The init.mif file provided with the CAM reference design shows an initialization 
file for an 8-bit wide (m = 8) by 16-word deep (n = 16) CAM. These are the contents of the 
example init.mif file:

• 00100001

• 01010101

• 10101010

• 11110000

• 00001111

C_MATCH_RESOLUTION_TYPE C_MATCH_RESOLUTION_TYPE 1 indicates the highest 
matched address 
output.
0 indicates the lowest 
matched address 
output.

C_MEM_INIT C_MEM_INIT 1 indicates MIF file is 
used to initialize CAM 
contents.

C_MEM_INIT_FILE None This is the hard-coded 
path to the init.mif 
file location.

C_ELABORATION_DIR None This is the hard-coded 
path to the init.mif 
file location.

C_MEM_TYPE C_MEM_TYPE 1 indicates block RAM 
implementation.
0 indicates SRL16E 
implementation.

C_READ_CYCLES Tied to 1 Not currently used.

C_REG_OUTPUTS C_REG_OUTPUTS 1 indicates that the 
CAM outputs are 
registered (block RAM 
type only).

C_TERNARY_MODE C_TERNARY_MODE 0 = No ternary mode.
1 = Standard ternary.
2 = Enhanced ternary.

C_WIDTH C_WIDTH Range: 1–512.

C_WR_ADDR_WIDTH If C_HAS_WE = 1, equals 
log2roundup(C_DEPTH)

Range: 4–12 (applies to 
writeable CAMs only).

Table  9:  RTL Parameters (Cont’d)

Generic Simplified Generics Description
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• 11001100

• 00110011

• 11100011

• 00011100

• 01000010

• 10000100

• 10011111

• 11101110

• 11111111

• 00000000

• 01100110

Each line of the MIF file specifies the match data for that address. For example, if line 3 (where 
the file starts at line 0) contained the value 11110000, the CAM signals a MATCH with 
MATCH_ADDR = 3 when the DIN port has the value 11110000.

Additionally, for standard ternary CAMs, the MIF file can also specify don’t-care bit entries as 
Xs. For example, if line 0 of the MIF file contains the value 000X0100, the CAM signals a 
MATCH with MATCH_ADDR = 0 when the DIN port has either the value 00010100 or 
00000100.

Supported Design Tools

The design tools supported by this reference design are:

• ISE® Design Suite 13.1 (including XST 13.1 and xilperl)

• Mentor Graphics ModelSim 6.5d

Resource Utilization and Performance

This reference design utilizes these resources:

• Block SelectRAM memory implementation: The number of block SelectRAM primitives 
required depends on the CAM depth and width selected in the CustomizeWrapper.pl 
script.

• SRL16E implementation: The number of SRL16E primitives required depends on the 
depth and width of the CAM and on whether a ternary CAM is selected in the 
CustomizeWrapper.pl script.

• Resource utilization and performance benchmarking: To maximize clock frequency for 
CAMs deeper than 256 words, a CAM with multi-match unencoded match address type 
and no additional match flags should be used. This corresponds to the following option 
settings:

• Single-match flag = FALSE

• Multiple-match flag = FALSE

• Match address type = Multi-match unencoded

Table 10 and Table 11 show resource utilization and performance values for a 32-bit wide, 
256-bit deep CAM for various match address types and storage element types implemented in 
a Virtex-5 device and a Spartan-3A device, respectively. These designs only contain a CAM 
and some glue logic, and are therefore representative of ideal performance rather than typical 
performance. To ensure timing closure, PERIOD constraints should be included in the user 
design. The benchmark designs do not include any implementation constraints besides a 
PERIOD constraint on the CAM clock. Virtex-6 devices have roughly the same resource 
utilization as Virtex-5 devices for the same CAM design, but with an estimated performance 
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gain of 15–20% over Virtex-5 devices. Spartan-6 devices use fewer resources than 
Spartan-3A devices, with an estimated performance gain of 10–15% over Spartan-3A devices.

In the benchmark designs described in Table 10 and Table 11, the core was encased in a 
wrapper with input and output registers to remove the effects of I/O delays from the results. 
Performance might vary depending on the design. Benchmarks were performed targeting the 
slowest and fastest speed grade devices in the Virtex-5 and Spartan-3A FPGAs.

• Virtex-5 FPGAs: XC5VLX220-1 (slowest) and XC5VLX220-2 (fastest)

• Spartan-3A FPGAs: XC3S1400A-4 (slowest) and XC3S1400A-5 (fastest)

Table 12 and Table 13 show how CAM content size affects the resource utilization and 
performance in Virtex-5 and Spartan-3A devices.

Table  10:  Virtex-5 FPGA CAM Implementation: Resource Utilization and Performance

Match Address Type

SRL16E Block RAM

SRL16s LUTs Flip-Flops Perf. 
(MHz)(1)

Perf. 
(MHz)(2)

Block 
RAMs LUTs Flip-Flops Perf. 

(MHz)(1)
Perf. 

(MHz)(2)

Binary Encoded 2048 3438 60 100 110 32 1263 302 110 130

Single Match Unencoded 2048 3604 308 100 110 32 1405 302 100 120

Multi Match Unencoded 2048 3259 308 100 120 32 1144 303 110 130

Notes: 
1. XC5VLX220, speed grade -1 (slowest).
2. XC5VLX220, speed grade -2 (fastest).

Table  11:  Spartan-3A FPGA CAM Implementation: Resource Utilization and Performance

Match Address Type

SRL16E Block RAM

SRL16s LUTs Flip-Flops Perf. 
(MHz)(1)

Perf. 
(MHz)(2)

Block 
RAMs LUTs Flip-Flops Perf. 

(MHz)(1)
Perf. 

(MHz)(2)

Binary Encoded 2048 3333 60 50 60 32 2236 303 60 70

Single Match Unencoded 2048 3430 309 50 60 32 2372 303 50 60

Multi Match Unencoded 2048 3336 309 50 60 32 2176 303 50 60

Notes: 
1. XC3S1400A, speed grade -4 (slowest).
2. XC3S1400A, speed grade -5 (fastest).

Table  12:  Virtex-5 FPGA SRL-Based CAM Implementation: Resource Utilization and Performance

CAM 
Width

CAM Depth

16 256 1024

SRL16s LUTs Flip-
Flops

Perf. 
(MHz)(1)

Perf. 
(MHz)(2) SRL16s LUTs Flip-

Flops
Perf. 

(MHz)(1)
Perf. 

(MHz)(2) SRL16s LUTs Flip-
Flops

Perf. 
(MHz)(1)

Perf. 
(MHz)(2)

8 32 148 27 190 200 512 1848 36 110 120 2048 7200 39 80 100

32 128 288 52 170 200 2048 3438 60 100 110 8192 13493 63 70 80

64 256 474 84 160 190 4096 5561 93 90 100 16348 21899 101 60 70

Notes: 
1. XC5VLX220, speed grade -1 (slowest).
2. XC5VLX220, speed grade -2 (fastest).

http://www.xilinx.com


Reference Design

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com  30

Table 14 and Table 15 show how CAM content size affects resource usage and performance 
clock periods for block SelectRAM memory in Virtex-5 and Spartan-3A devices. These devices 
only contain a CAM and some glue logic and for this reason represent ideal performance rather 
than typical performance.

Table 16 and Table 17 show the resource usage and performance in Virtex-5 and Spartan-3A 
devices for a 32-bit wide and 256-word deep CAM using a multiple match unencoded match 
address type with other configuration options turned on.

Table  13:  Spartan-3A FPGA SRL-Based CAM Implementation: Resource Utilization and Performance

CAM 
Width

CAM Depth

16 256 1024

SRL16s LUTs Flip-
Flops

Perf. 
(MHz)(1)

Perf. 
(MHz)(2) SRL16s LUTs Flip-

Flops
Perf. 

(MHz)(1)
Perf. 

(MHz)(2) SRL16s LUTs Flip-
Flops

Perf. 
(MHz)(1)

Perf. 
(MHz)(2)

8 32 151 27 80 100 512 1727 36 50 70 2048 6646 42 40 50

32 128 299 52 80 100 2048 3333 60 50 60 8192 12892 66 40 40

64 256 499 84 80 90 4096 5464 92 40 50 - (3) - (3) - (3) - (3) - (3)

Notes: 
1. XC3S1400A, speed grade - 4 (slowest).
2. XC3S1400A, speed grade -5 (fastest).
3. Does not fit in an XC3S1400A device.

Table  14:  Virtex-5 FPGA Block RAM-Based CAM Implementation: Resource Utilization and Performance

CAM 
Width

CAM Depth

16 256 1024

SRL16s LUTs Flip-
Flops

Perf. 
(MHz)(1)

Perf. 
(MHz)(2) SRL16s LUTs Flip-

Flops
Perf. 

(MHz)(1)
Perf. 

(MHz)(2) SRL16s LUTs Flip-
Flops

Perf. 
(MHz)(1)

Perf. 
(MHz)(2)

8 1 95 34 200 210 8 1077 277 130 160 32 4138 1048 100 110

32 4 170 57 170 180 32 1263 302 110 130 128 4677 1072 60 80

64 7 281 91 140 160 56 1721 335 90 110 - (3) - (3) - (3) - (3) - (3)

Notes: 
1. XC5VLX220, speed grade -1 (slowest).
2. XC5VLX220, speed grade -2 (fastest).
3. Does not fit in the available block RAMs for an XC5VLX220 device.

Table  15:  Spartan-3A FPGA SRL-Based CAM Implementation: Resource Utilization and Performance

CAM 
Width

CAM Depth

16 256 1024

SRL16s LUTs Flip-
Flops

Perf. 
(MHz)(1)

Perf. 
(MHz)(2) SRL16s LUTs Flip-

Flops
Perf. 

(MHz)(1)
Perf. 

(MHz)(2) SRL16s LUTs Flip-
Flops

Perf. 
(MHz)(1)

Perf. 
(MHz)(2)

8 1 124 35 110 130 8 1368 278 70 80 32 5623 1079 50 - (3)

32 4 219 59 90 120 32 2236 303 60 70 - (3) - (3) - (3) - (3) - (3)

64 8 357 92 90 110 - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3)

Notes: 
1. XC3S1400A, speed grade - 4 (slowest).
2. XC3S1400A, speed grade -5 (fastest).
3. Does not fit in the available block RAMs for an XC3S1400A device.
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Table  16:  Virtex-5 FPGA CAM Implementation: Resource Utilization and Performance

Options

SRL16E Block RAM

SRL16s LUTs Flip-Flops Perf. 
(MHz)(1)

Perf. 
(MHz)(2)

Block 
RAMs LUTs Flip-Flops Perf. 

(MHz)(1)
Perf. 

(MHz)(2)

Single Match Multiple Match 
Flags On 2048 3259 308 100 120 32 1144 303 110 130

Ternary Mode On 4096 5623 341 80 100 N/A(3) N/A(3) N/A(3) N/A(3) N/A(4)

Registered Outputs N/A(4) N/A(4) N/A(4) N/A(4) N/A(4) 32 1144 562 110 130

Notes: 
1. XC5VLX220, speed grade -1 (slowest).
2. XC5VLX220, speed grade -2 (fastest).
3. Ternary mode is not supported for block RAM-based CAMs.
4. Registered outputs are not supported for SRL-based CAMs.

Table  17:  Spartan-3A FPGA CAM Implementation: Resource Utilization and Performance

Options

SRL16E Block RAM

SRL16s LUTs Flip-Flops Perf. 
(MHz)(1)

Perf. 
(MHz)(2)

Block 
RAMs LUTs Flip-Flops Perf. 

(MHz)(1)
Perf. 

(MHz)(2)

Single Match Multiple Match 
Flags On 2048 3336 309 50 60 32 2176 303 50 60

Ternary Mode On 4096 5676 341 40 50 N/A(3) N/A(3) N/A(3) N/A(3) N/A(3)

Registered Outputs N/A(4) N/A(4) N/A(4) N/A(4) N/A(4) 32 2265 561 60 70

Notes: 
1. XC3S1400A, speed grade -4 (slowest).
2. XC3S1400A, speed grade -5 (fastest).
3. Ternary mode is not supported for block RAM-based CAMs.
4. Registered outputs are not supported for SRL-based CAMs.
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